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MAGNETIC BREAKDOWN IN A FINITE ONE-DIMENSIONAL MODEL - 
INFINITE POTENTIAL RELAXED 

by Gabriel Allen 

Lewis Research Center 

SUMMARY 

Exact solutions have been obtained for a model representing an electron in 
a one-dimensional periodic potential acted on by a transverse uniform magnetic 
field. 
long) of "periodic" square wells. Within this chain, the parabolic potential 
due to the magnetic field was approximated by a parabolic square-well potential. 
The infinite potential at each end of the chain, which was used in a previous 
report to cut off the chain sharply, is relaxed and the true magnetic parabolic 
potential was used outside of the chain. Eigenvalues and wave functions are 
computed for the case of equal widths of wells and hills in the periodic part 
of the potential. A reasonably consistent interpretation of the behavior of 
the wave functions is presented with crossing-like behavior between zero field 
energy bands being a likely part of the interpretation. 

The periodic potential is approximated by a finite chain (20 atoms 

INllRODUCTION 

In a previous report (ref. 1) exact quantum-mechanical solutions were ob- 
tained for a model representing an electron in a one-dimensional periodic po- 
tential acted on by a uniform transverse magnetic field. 
analysis of the eigenvalues and wave functions of this system showed that the 
model seemed to be capable of following certain magnetic breakdown effects in 
some detail. It was possible to see the increasing influence of the magnetic 
fields on the behavior of the states by following individual states from zero 
magnetic field (where the periodic band structure properties control the be- 
havior of the system) to magnetic fields larger than Blount breakdown fields. 

The results of an 

For the system in reference 1, the Schroedinger equation was reduced to a 
one-dimensional problem with an effective potential of the form shown in fig- 
ure 1 (called a parabolic square-well potential). In the figure, the depth of 
the periodic potential well is denoted by 
tential is denoted by VC, where 

Vo and the magnetic step in the po- 

where a is the period. 



The absence of periodicity meant that the number of matching conditions 
(and thereby the rank of the determinant used for the determinantal compati- 
bility condition) increased with the length of the chain. 
condition, which may be mitten as 

The absolute cutoff 

v ( N  + 1). - w] = [ 
was imposed to keep the number of computations down to a manageable level. In 
equation (21, N 
the width of the periodic potential well. 

is the number of atoms in one-half of the chain, and 2w is 

The main effect of this condition appeared to be that wave functions be- 
t 

longing to eigenvalues near Vo + $V, were forced to zero near the cutoff 
region at the end of the chain. The relaxing of the absolute cutoff condition 
should therefore improve the model. To this end, a program for determining 
eigenvalues and wave functions for an effective potential of the form shown in 
figure 2 was undertaken. The program was completed and the results have been 
used to try to interpret those effects in both the eigenvalues and wave func- 
tions arising from the cutoff condition. 

Significant changes in the results were not expected, and the main fea- 
tures of the preceding model were found again. However, the effects of the 
possible interchange of properties between different bands were not considered 
in reference 1, and the likelihood of such events permitted a more detailed 
interpretation of the results to be made than in the preceding report. 

SYMBOLS 

constant multiplying wave function in pure magnetic region 

period 

velocity of light 

functional form of determinantal compatibility condition 

vth order parabolic cylinder function 

parametrized quantity used like energy, see eq. (6) 

charge of electron 

defined by eqs. (11) and (12) 

magnetic field strength 



+ 
H magnetic f i e l d  

Blount breakdown value of magnetic f i e l d  

magnitude of z-component of magnetic f i e l d  

HB 

Hz 

35 Dirac h, Planck's constant/Zfl 

kZ component of wave vector  

m mass of e lec t ron  

N number of atoms i n  one-half of chain 

n integer  defining l e v e l  of s t a t e  i n  band 

r cyclotron radius  

defined by eqs. (All) and (A12) 

defined by eq. (Al3) h -h 
'n) 'n 

w -w 
defined by eq. (Al4) 

'n3 'n 

w e l l  depth of per iodic  po ten t i a l  vO 

magnetic s t e p  i n  poten t ia l  v i  
t o t a l  po ten t i a l  

half-width of  per iodic  po ten t i a l  well  

coordinates 

ac tua l  eigenvalue o f  system 

wave funct ion 

defined by eq. (15) 

defined by eq. (16) 

cyclotron frequency 

3 
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Subscripts: 

M pure magnetic 

N l a s t  period i n  per iodic  p o t e n t i a l  region 

n nth period 

Superscripts : 

h h i l l  

w well 

R reduced 

- 
0 sign of appropriate g 
-I- 

MODEL DESCRIPTION 

Most of the  c h a r a c t e r i s t i c s  of the model a r e  the  same as i n  reference 1. 
In  par t icu lar ,  i n  the  region 

t h e  same parabolic square-well p o t e n t i a l  appl ies  as i n  reference 1. 
t h i s  region i n  f i g s .  1 and 2 . )  However, i n  reference 1, a t  

(Compare 

X I  = ( N  + 1). - w 

the  cutoff condition given by equation (2 )  i s  applied.  
described as an absolute cutoff i n  the sense t h a t  it has the  e f f e c t  of keeping 
the  electron e n t i r e l y  ins ide  the  "box" so t h a t  f o r  

This condition may be 

the  wave function A(x') i s  zero. 

In  t h i s  report ,  t h e  absolute cutoff condition is  p a r t i a l l y  relaxed (by 
keeping the "purett magnetic po ten t ia l )  t o  allow t h e  system t o  penetrate i n t o  
the region I x ' (  > ( N  -I- 1 ) a  - w. However, the  periodic p a r t  of the poten t ia l  
i s  s t i l l  cut  off i n  order t o  keep the number of matching conditions f i n i t e .  In 
t h i s  region, the  e f fec t ive  p o t e n t i a l  w i l l  subsequently be ca l led  pure magnetic. 

Relaxing the  absolute cutoff condition makes f o r  an improved model i n  the  
obvious sense of re leas ing  t h e  electron from i t s  "box." However, the  boxing-in 
aspect had t h e  advantage of providing a na tura l  s t a r t i n g  point  f o r  the  individ- 
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I Figure 1. - Form of potential given by parabolic square well with absolute cutoff. 

I 

1 
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Figure 2. - Form of potential due to parabolic square well without absolute 
cutoff, w = a14. 

+ 
ual states at H = 0. 
and the individual states could be followed as H increased to Blount break- 
down values. 

The identity of these zerz-field states was preserved 

In the present model, the absolute cutoff condition is replaced by the 
pure magnetic potential 

in the region I x' 1 1 ( N  + 1) a - w, where the cyclotron frequency is 
eHZ 

cDc = - mc 

--f When figure 2 is referred to, it can be seen that if H = 0 there will be 
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no bound states a t  a l l ;  however, any f i n i t e  H, no matter how s m a l l ,  w i l l  bind 
the  system. Thus, t he re  can be no easy t r a n s i t i o n  from small f i e l d s  t o  zero 
f i e l d .  

There is  no good reason t o  give up t h i s  advantage of t he  cutoff model. For 
t he  lower ly ing  states, t he  absolute cutoff condition has very l i t t l e  e f f e c t  on 
the  system since f o r  t h e  f i e l d s  s tudied i n  reference 1 the  f i n i t e  po ten t i a l  bar-  
r i e r  w a s  already very l a r g e  a t  x' ,< ( N  + 1)a - w. Thus, t h e  main advantage 
gained by relaxing the  absolute  cutoff w a s  i n  examining the  behavior of higher 
s t a t e s  ( a t  comparatively s m a l l  magnetic f i e l d s )  whose amplitudes would s t i l l  be 
appreciable i n  t h i s  v i c i n i t y  i f  not forced t o  zero by the  cutoff .  ( A t  high mag- 
ne t i c  f i e lds ,  the  cyclotron radius becomes s o  s m a l l  t h a t  the  wave function has 
a very s m a l l  amplitude near t he  periodic cutoff except fo r  s t a t e s  a t  r a the r  high 
l eve l s . )  Now it i s  des i rab le  t o  follow the  behavior of s t a t e s  which f lank the  
f i r s t  energy gap (band gap) a t  zero f i e l d  up through higher f i e l d s .  
t i v e l y  low f i e l d s ,  those sta'ces would come under the  heading of low-lying s t a t e s  
as described previously. There is thus no reason t o  r e l ax  the  absolute cutoff 
condition a t  s m a l l  f i e l d s  and the  eigenvalues f o r  zero f i e l d  computed using t h i s  
condition w i l l  be re ta ined  i n  t h i s  model. 

N 

A t  r e l a -  

A proper way t o  e f f e c t  a smooth t r a n s i t i o n  would be t o  s ta r t  with a f u l l y  
per iodic  po ten t i a l  (a "chain" of i n f i n i t e  length) a t  zero f i e l d  and then in t ro -  
duce a per iodic  cutoff  po ten t i a l  of monotonically decreasing length as H in -  
creases.  Computational d i f f i c u l t i e s  make such a procedure impractical .  

To summarize then, t he  model+used herein i s  the  parabolic square well with 
per iodic  cutozf of f i gu re  2 fo r  
f igure  1 a t  H = 0. 

H > 0 and the  per iodic  po ten t i a l  i n  a box of 

SOLUTION OF WAVE EQUATIONS 

After t he  standard reduction t o  one dimension, t he  wave equation fo r  the 
physical system becomes 

where V(x'> i s  t h e  po ten t i a l  shown i n  f igure  2 and 

where E i s  the  ac tua l  eigenvalue of the  system and kz i s  t h a t  component of 
the  wave vector k which i s  p a r a l l e l  t o  t he  magnetic f i e l d  H. These equa- 
t ions  and def in i t ions  a r e  iden t i ca l  with equations (23 )  and ( 2 1 )  respect ively i n  
reference 1, except fo r  t he  f a c t  t h a t  i n  t h i s  repor t  the cutoff condition (2)  i s  
replaced by the  condition 

--z --f 
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The solution to equation (5) in the regions of constant potential contained 
in the interval 0 < x' < Na + w are of the same form as in reference 1 and are 
summarized below for theeven solutions : 

A:(xl) = B: COS GWx' 0 

where -w < x' < - w, - 

W W W W - sinh Gn [XI - (na - w'] + Bn cosh Gn [x' - (na - wl] gn < 0 

= o  W [xt - (na - w j  + B: gn 

gn w > O  W - sin G: [XI - (na - wjJ + B, cos 

(9) 

W 
An(x') = 

where na - w < x' < - na + w, and - 
h 
n h h A 
- h sinh GE [XI - (na + w! + Bn [x' - (na + wi Qn < 0 

h h 
An(x') h = 8 - (na + wj + B, gn = 0 

sin G: [XI - (na + wj + Bn h cos Gn [xl - (na + wJ gn h > O  

Gn (10) 

where na + w < - x' < - (n 'i 1). - w. In equations (8) to (lo), 
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Note that in this report equation (10) also applies in the region of the 
last hill, Na + w < x' < (N + 1). - w, unlike the case'in reference 1 which re- 
quires a special f&m for this region. 

For x' > (N + 1)a - w, the harmonic oscillator potential 1 m C x  2 ' 2  - 
governs the behavior of the system and the solution becomes 

where Dv({) is the vth order parabolic cylinder function (ref. 2 ) ,  is a 

constant , and 

The subscript 
magnetic. 

M denotes the fact that in this region the potential is pure 

The modifications that this requires in the matching conditions and their 
use in computing eigenvalues are shown in appendix A. The use of Weber func- 
tions of high order introduced some special difficulties in the computations, 
which are discussed in appendix B. 

2 2  
computed are E - 5 kz/2m rather than E. 

As in reference 1, the eigenvalues actually 

WAVE FLTNCTIONS 

Wave flmctions were obtained in the usual way by finding the coefficients 
in each region of constant potential in terms of an arbitrary coefficient which 
was the coefficient in the Oth well, Bw. 
same as described in reference 1 and need not be repeated here. 

The procedure was essentially the 
0 

It should be noted that the wave functions were not normalized in the 
usual fashion. The difficulty lay in the fact that a proper normalization 
would require the evaluation of integrals of the form 

8 



where 

There is no easy way to evaluate such integrals. Therefore, an incomplete 
normalization was used. 
val in the aforementioned integral and using the condition 

The procedure consisted merely of neglecting the inter- 

,.( N+1) a-w 

On the one hand, the use of this condition means that quantitative compar- 
isons of the amplitudes of wave flmctions belonging to different eigenvalues 
are not valid. On the other hand, the kind of comparison that is suitable for 
the particular analysis desired can be made quite rigorously. For a given 
state, the amplitude is examined as a fbnction of x' to determine in which 
part of the "crystal" the system has a comparatively larger probability of 
being found. Then, a similar examination is made for a different state in 
order to determine whether the two states have large and small amplitudes in 
the same regions. In this connection, it may be mentioned that for most states 
the neglected contribution to the normalization is quite small so that even the 
approximation to the absolute magnitudes of the amplitudes is good. 

RESULTS AND DISCUSSION 

Eigenvalues 

The eigenvalues 
netic field strength 
mon parameter, it was 

for various well depths are shown as a function of mag- 
H in figure 3. 
chosen as the ordinate in preference to Vo. However, 

+ 
Since magnetic field strevgth is a com- 

is also shown on the vertical scale to make it easier to compare these re- 

For each 

vO 
sults with those in reference 1. The discontinuities in the slopes in the fig- 
ures are due to the procedure used. 
out for a few values of H and these eigenvalues were then connected by 
straight lines. 
at different magnetic field strengths. As explained in the last section, the 
eigenvalues for 
The Blount breakdown lines are shown on the figures as an aid in the analysis 
of the results. General quantum mechanical considerations ensure that alternate 
even and odd solutions occur (ref. 3 ) .  

Vo, computations were carried 

It is convenient to let these lines represent the same "state" 

Hz = 0 are those taken from the box model of reference 1. 

In a few cases, % oscillated near but 
not through zero for a series of trials for even solutions in an enera inter- 
val in which several odd solutions were found. In these instances, circles 
were placed between odd eigenvalues in the general vicinity of where the even 
eigenvalues must lie. 

9 
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(a) Well depth of periodic potential, 5 electron volts. 
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30 
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-6 
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07 
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(b) Wel l  depth of periodic potential, 10 electron volts. 

Figure 3. - Eigenvalues as function of magnetic field strength. 

From a comparison of figure 3 with the correspynding figure 3 of refer- 
ence 1, it can be seen that at the same value of Vo the density of eigenvalues 
in the second band increases when the absolute cutoff condition is relaxed. For 
very large fields, where the magnetic potential effectively boxes in the system 
anyway, the eigenvalues are essentially unchanged by the relaxing of the cutoff. 
The values serve the purpose of identifying the band to which a par- 
ticular eigenvalue belongs. However, there is clearly no longer a smooth 
transition from small field eigenvalues (for which the cutoff has been relaxed) 
to zero-field eigenvalues (for which the cutoff has been retained). 

Hz = 0 
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A fact should be noted here that was perhaps not made sufficiently clear 
in reference 1 to which it also applies. In computing the eigenvalues, an at- 
tempt would be made to find a value of € 

dix A) smaller than some preassigned value. This value of % which was chosen 
by trial and error was small enough to enable the boundary conditions to be sat- 
isfied by the wave functions. Although only those eigenvalues which satisfied 
this criterion were used in computing the wave functions, all of the values of 
E changed signs are presented in figure 3 both here and in ref- 
erence 1. The identification of the band to which a given eigenstate belongs, 
together with its location in the band, is important even if the eigenvalue it- 
self cannot be used in computing a satisfactory wave function. 

which would make % (see appen- 

at which DN 

Wave Functions 

Before discussing the results of the calculations in this report, it might 
be of some interest to review briefly the results in reference 1. The general 
behavior of the wave functions was such that for 
Blount breakdown value) the wave functions were greatly influenced by the peri- 
odic part of the potential. Thus the relative probability that the system 
would be found near compared to the probability that it would be found far from 
the cutoff was quite similar for states within the same band but changed dras- 
tically in going from a state on one side of the energy gap to a state just the 
other side of this gap. This, change in behavior of the eigenstates on crossing 
an energy gap was always great even when the difference in the energies of the 
states flanking the gap at a fixed value of was very small (see figs. 3(c) 
and 5 in ref. I). 
the wave functions of crossing the energy gap became less pronounced until, at 
H 

H << % (where % is the 

H 
As the magnetic field increased, however, the effect on 

HB, no discernible effect remained (see fig. 10, ref. 1). 

It may be argued that the use of negative amplitudes was unnecessary. The 
[ A I  or I A l 2  was that reason for plotting the actual wave function rather than 

it was easier to check visually the continuity of the slope across boundaries 
separating regions of different potential from A(x') than from either of the 
other choices. 

When describing the strong effect of the periodic part of the potential on 
the behavior of these states, there is no intent to imply that any departure 
from the general behavior of electrons under the combined influence of periodic 
potentials and magnetic fields is being shown by this model. The magnetic 
field is the principal influence on the electron (ref. 4). 
is demonstrating is the difference between the effect of a magnetic field on 
free electrons and on electrons in a periodic potential. Electrons in states 
near the bottom of a band act very much like free electrons. Wave functions 
for such states are peaked near their cyclotron radius 

All that the model 

Kk 11.5 d 7 ;  
r = - x  

6 "C 

where H, is in kilotesla and n is the number identifying the level of the 
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state  i n  t h e  band ( n  = 1 f o r  t h e  ground state).  
peaks are near t h e  center  of t h e  e f f ec t ive  po ten t i a l .  

For t h e  model used here, these 

As  t h e  states approach the  top  of t h e  band, t h e i r  behavior becomes l e s s  
free and is  more d i f f i c u l t  t o  describe.  
band, a "free electron"- l ike behavior i s  t o  be expected again with peaks r e l a -  
t i v e l y  near t h e  center  of t he  e f f ec t ive  po ten t i a l .  
H, t h e  e f f e c t  of t he  per iodic  po ten t i a l  becomes less pronounced and t h e  behavior 
of states near t h e  top of a band w i l l  not be very d i f f e r e n t  from those near t he  
bottom of the  successive band. 

However, a t  t h e  bottom of t h e  next 

For very l a r g e  values of 

The preceding descr ip t ion  omits any discussion of t he  p o s s i b i l i t y  t h a t  the  
magnetic f i e l d  can cause a crossing between states o r ig ina l ly  i n  d i f f e r e n t  
bands. Such an omission appears qu i t e  acceptable a t  f i rs t  s igh t .  If a given 
so lu t ion  t o  a one-dimensional Schroedinger equation is  a continuous function of 
a parameter, then t h e  number of nodes of t h e  so lu t ion  w i l l  not be changed by a 
change i n  the  parameter. Now t h e  magnetic f i e l d  H, is  a parameter of t h e  
wave funct ion here, so a wave funct ion t h a t  has, f o r  example, 2 0  nodes when 
H = 0 w i l l  have 20 nodes when H = 5 k i l o t e s l a .  Since t h e  s t a t e  represented 
by t h i s  M e t i o n  w a s  i n  t he  f i rs t  band a t  
f irst  band has 2 1  nodes), t h e  s t a t e  which has 2 0  nodes when 
s t i l l  has t o  be regarded as  the  same state ( insofar  as i t s  loca t ion  i n  the  band 
is  concerned). 

H = 0 ( t h e  state a t  t h e  top of t he  
k i l o t e s l a  H = 5 

This f a c t  does not  prevent t h e  proper t ies  of t he  wave function a t  l a rge  
H, from being very much l i k e  those from another band a t  small  H,. A qua l i t a -  
t i v e  descr ip t ion  of t h e  s i t u a t i o n  can be made with the  a i d  of f igu re  4(a), 
which i s  a schematic representa t ion  of t he  va r i a t ion  of t h e  two d i s t i n c t  s t a t e s  
1 and 2 with an a r b i t r a r y  parameter p. A t  a c e r t a i n  value pc of t he  param- 
eter, there  i s  a near crossing of states 1 and 2. Under such circumstances, 
t he  wave functions f o r  e i t h e r  of t he  two s t a t e s  may acquire a l a r g e  admixture 
of proper t ies  of t he  other s t a t e .  If such a mixing of proper t ies  occurs, then 
a t  some l a r g e r  value of t h e  parameter, f o r  example po, t he  wave funct ion for 
s t a t e . l  might have proper t ies  much l i k e  those which would be expected from an 
extrapolat ion of proper t ies  of state 2 when p << pc and v i ce  versa.  If 
s t a t e s  1 and 2 a r e  i n  d i f f e r e n t  bands fo r  p << pc, t he  aforementioned pa t t e rn  
of events w i l l  be ca l l ed  an "interband t r ans fe r .  'I 

Figure 4 (b )  shows a possible  two-stage interband transfer between a pa i r  
of states o r ig ina l ly  i n  the  first band and a second p a i r  o r ig ina l ly  i n  t h e  sec- 
ond band. 

The results of t he  present computations a r e  shown i n  f igures  5 and 6 f o r  a 

Vo of 5 and 10  e lec t ron  vo l t s ,  respect ively.  
should be kept i n  mind t h a t  t he  normalization w a s  not complete s o  t h a t  quanti-  
t a t i v e  comparisons between t h e  amplitudes of d i f f e ren t  states a t  t h e  same posi-  
t i o n  may not be r e l i a b l e .  
t h e  amplitude near t h e  per iodic  cutoff t o  the  amplitude near t he  center  w i l l  be 
independent of the  absolute magnitude of t he  amplitude. 
r a t i o s  between two d i f f e r e n t  s t a t e s  w i l l ,  therefore ,  be r e l i a b l e .  

I n  examining these f igures ,  it 

On t h e  other hand, f o r  a given s t a t e ,  t h e  r a t i o  of 

A comparison of such 

1 2  



(a) Schematic possible transfer of properties between two states having a near-crossing. 

H 

I 

E 
(b) Possible two-stage interband transfer between two states at top of f i r s t  band and two states 

at bottom of second band. Transfer occurs between states 1~ and 28 at (a), between IT and 
1: at (b), between lT and 2B again at (d), and between 2s and 26 at (c). For large values 
of magnetic field H, li and 1~ states would have properties l ike states 28 and 2+8, 
respectively, whi le  2B and 2; would have properties l ike 1: and IT, respectively. (State at 
bottom of f i r s t  band, Ig; state at top of f i r s t  band, lT; state jus t  belw top of f i r s t  band, 1% 
state jus t  belw state 17: 1:; state at bottom of second band, 28; state jus t  above bottom of 
second band, 2;; state jus t  above state 2'8, 2;. 1 

Figure 4 - Schematic representation of interband transfer. 
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I n  the  remainder of t h e  discussion t h e  expression I t  s t a t e  i n  t h e  
band" w i l l  mean "wave funct ion corresponding t o  t h e  eigenvalue i n  

t h e  
f i e l d .  

band." Both t h e  band and t h e  pos i t i on  i n  the  band r e f e r  t o  zero 

Figure 5 (a )  may be se lec ted  f o r  a de t a i l ed  discussion. A s  can be seen 
from figure 3(a), a f i e l d  s t r eng th  of 3 k i l o t e s l a  (<< HB) f o r  
v o l t s .  Thus, t h e  influence of the  per iodic  p a r t  of t he  po ten t i a l  should be 
d iscern ib le  i n  f igu re  5 ( a ) .  
t r a n s f e r  i s  evident. The t e n t h  odd s t a t e  i n  t h e  first band behaves l i k e  a 
state nearer the  bottom of a band than t h e  top. 
cha rac t e r i s t i c s  of s t a t e s  near t he  bottom of the  second band crossed with t h e  
cha rac t e r i s t i c s  of some of t h e  states near t h e  top o f t h e  first band. The next 
two higher s t a t e s  (which, by the  way, correspond t o  the  top of t he  first band 
and bottom of t he  second band, respec t ive ly)  a c t  l i k e  s t a t e s  near t h e  top of a 
band, which i s  i n  agreement with t h e  descr ip t ion  of t r ans fe r  behavior. The 
next two s t a t e s  are both second band s t a t e s .  They do indeed behave l i k e  second 
band s t a t e s  and furthermore seem t o  behave l i k e  s t a t e s  not qu i t e  as near t o  the  
bottom of a band as the  t en th  odd s t a t e .  The e n t i r e  set  of four  states shown 
thus seems t o  be i n  complete conformity with the  in t e rp re t a t ion  of interband 
t r a n s f e r  described i n  the  preceding paragraphs. 

Vo = 5 e lec t ron  

Examination of t h i s  f i gu re  shows t h a t  interband 

Such would be t h e  case i f  t h e  

Next f igu re  5(b)  may be examined. The in t e rp re t a t ion  here is  a l s o  i n  
agreement with t h e  ove ra l l  p i c tu re  described, but  t he  results a re  l e s s  s t r ik ing .  
The t en th  odd state decidedly shows t h e  behavior expected from a s t a t e  near t he  
top of a band s o  the  crossing, i n  evidence f o r  t h i s  s t a t e  a t  3 k i l o t e s l a ,  has 
disappeared a t  4 k i l o t e s l a .  
t he  f igure  does not admit of a c l ea r  i n t e r p r e t a t i o n  i n  terms of band pos i t ion  
s ince  no d e f i n i t e  preference i s  shown f o r  any pa r t i cu la r  p a r t  of the  atomic 
chain, 
a sce r t a in  the  e f f e c t  of t he  absolute cutoff .  That f i gu re  showed the  behavior 
of wave functions i n  a po ten t i a l  having 
k i l o t e s l a ,  which i s  close t o  the  conditions holding f o r  f igu re  5(b)  i n  t h i s  re- 
por t .  

The behavior of t h e  other  th ree  states shown on 

A comparison with f igu re  l O ( a )  i n  reference 1 can be made t o  attempt t o  

Vo = 5 e lec t ron  v o l t s  and H = 3.8 

It may be noted t h a t  t he  cutoff s t a t e s  seem t o  be showing t r ans fe r  behav- 
i o r  s ince  t h e  states near t he  top of t he  first band a t  zero f i e l d  exh ib i t  t he  
behavior of s t a t e s  near t he  bottom of a band, whereas the  s t a t e  which repre-  
sented the  bottom of the  second band a t  zero f i e l d  behaves l i k e  a s t a t e  near 
t he  top of a band. 
t r a n s f e r  t h a t  is  not present  when the  cutoff  condition i s  relaxed. 

The absolute cutoff thus seemed t o  e f f e c t  an interband 

Figures 5(c)  and (d )  can now be examined together  and compared with f i g -  
The po ten t i a l  f o r  t h e  s t a t e  i n  f i g -  ures  10(b) ,  ( c ) ,  and (d)  i n  reference 1. 

ure 5 (c )  of t h i s  repor t  is  almost exact ly  t h e  same as fo r  the  s t a t e s  i n  f igure  
10(b) ,  whereas t h e  magnetic f i e l d  i n  5(d) is about midway between those i n  f i g -  
ures  lO(c) and (d)  of reference 1. The suggested comparison shows t h a t  t he  be- 
havior of t he  states i s  changed very l i t t l e  by relaxing of t h e  cutoff  condition. 
As  asser ted  i n  the  descr ip t ion  of t he  model, a t  high magnetic f i e l d s ,  the  ef- 
f e c t  of t he  cutoff  should not  be very strong, and t h i s  i s  prec ise ly  what the  
r e s u l t s  confirm. I n  pa r t i cu la r ,  t h e  phenomenon of Blount breakdown and t h e  
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Figure 5. - Wave functions for well depth of 5 electron volts. 

15 



s 4 r  / 

13.16 10th odd n 14.00 11th even 
______ 14.77 11th odd 

15.20 12th even 

(c) Magnetic field strength, 5.0 kilotesla. 

15.76 1Mh odd 
16.25 11th even 

---- 16.63 11th odd 
17.30 12th even 

x', A 

(d) Magnetic field strength, 6.0 kilotesla (near Blount breakdown). 

Figure 5. - Concluded. 
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Figure 6. - Wave functions for well depth of 10 electron volts. 
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Figure 6. - Continued. 
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disappearance of the effect of the periodic potential is retained upon the re- 
laxation of the cutoff condition. 

The discussion of the VO = 10 case may be prefaced by some pertinent re- 
marks. First, improved computations enabled a more complete set of wave f’unc- 
tions to be presented here than was available in reference 1. However, some 
eigenvalues still did not have sufficiently small 
use in the computation of wave functions. The fact that the set of wave func- 
tions for 
to compare the wave functions with and without the cutoff for this case. What 
comparison is possible, however, is in agreement with the general ideas pre- 
sented herein. Secondly, the larger zero field energy gap would tend to re- 
quire higher magnetic fields to get interband transfer and other wave function 
behavior similar to the VO = 5 behavior. 

DJJ values to permit their 

Vo = 10 was relatively incomplete in reference 1 makes it difficult 
3 

\ 

Figure 6(a) (H = 3.0 kilotesla) exhibits the effect of the cutoff very 
strikingly. 
shows wave functions at 
the wave functions to zero near the end of the chain. This effect was so strong 
that it masked other effects (such as band effects) which might otherwise have 
been manifest. Also, the eigenvalues themselves were pushed noticeably higher 
(the states flanking the energy gap were displaced upwards.) 

A comparison of this figure with figure 5 of reference 1 (which 
H = 3.1 kilotesla) shows that the cutoff indeed forced 

As shown in figure 6(b), when H = 4.0 kilotesla, the wave functions behave 
in a manner qualitatively similar to those in figure 5(a). The 13.91-electron- 
volt state is clearly in the second band, the next two are back in the upper 
part of the first band, and finally t.he second band states continue to fill up. 

Figures 6(c) to 6(f) show the wave functions as H goes from 5.0 to 
8.0 kilotesla. The same general behavior is shown by the eigenstates as for 
the shutdown Vo = 5.0-electron-volt potential wells. Interband transfers 
show up rather well at the lower magnetic fields; then, as H increases, 
the evidence of the band structure gradually disappears until at 7.0 kilotesla 
no remnant of this structure remains. It should be noted that the effects of 
the periodic part of the potential became small at values of H considerably 
less than 
Blount breakdown; it may rather be a precursor of it. 

HB (see fig. 3(b)). This phenomenon might not be quite the same as 

SUMMARY OF RESULTS 

A one-dimensional model has been examined to try to follow some details of e 

the magnetic breakdown process. 
magnetic field H, 
square wells. This model is an improvement over a previous one which cut off 
the chain by means of an infinite potential at each end. 

The model is that of an electron in a uniform 
and a one-dimensional transverse chain of 20 periodic 

z 

Exact solutions were obtained for both the eigenvalues and wave functions. 
Examination of the wave functions showed that, for comparatively small magnetic 
fields, at a fixed magnetic field and periodic well depth 
the eigenstates admits a rather consistent interpretation in terms of an inter- 

Vo the behavior of 

2 0  



band transfer of characteristics between bands. As the magnetic field is in- 
creased, however, the band effects become less pronounced. For Vo = 5 elec- 
tron volts, the value of the magnetic field at which such band structures ef- 
fects become unimportant is the Blount  breakdown value For the deep wells 
(Vo = 10 eV), the magnetic field strengths are still quite a bit lower than the 

HB values, which indicates that the system may be in some condition which is a 
sort of precursor of an actual magnetic breakdown state. 

HB. 

Lewis Research Center, 
National Aeronautics and Space Aaministration, 

Cleveland, Ohio, October 22, 1965. 
c 
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AF'PENDIX A 

MATCHING CONDITIONS AND DERIVATION OF EIGENVALUES 

The matching conditions up to the Nth hill are the same as those in refer- 
ence 1 and are found in appendix A therein. In the &h hill, however, [! sinh 1 N - (Na + w g i  

X I  - (Na + w> 

h sin Gh kl - (Na I- wa 

AN h ( X I )  = A 
N 

GN 

h cosh GN - (Na + wfl gc < 0 

"[~sG~&~~(Na+w~] $:: N 

and 

N 

h 
N N  

-sin G i  [XI - (Na + w] 

In the pure magnetic region, x' > (N + 1). - w, 

and from reference 2, 
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The matching conditions then become 

where 

and the other quantities appear in appendix A of reference 1. 

With these changes, the determinantal compatibility condition is obtained 
by setting equal to zero the following determinant 
equation (A31) in reference 1 (note that this is specifically for the case of 
even functions): 

DN, which corresponds to 

-CLAM %$ C,Bi 0 0 0 0 . . .  0 0 

-c;% c;G c p N  0 0 0 0 . . .  0 0 

0 0 -1 C R A i  C R G  0 0 . . .  0 0 

0 -1 0 C A G  CAB; 0 0 . . .  0 0 

0 0 0  0 -1 CRA:-l C R G - l  . . . 0 0 

0 0 0 -1 0 CA%-, CdB”,-, . . . 0 0 

0 0 0  0 0 0  -1 . . .  0 0 

0 . . .  0 0 0 0 0  0 0 -1 

. . .  . 

. . .  . 

. . .  . 
h 0 0 0  0 0 0  0 . . . CRAO C R B t  

0 0 0  0 0 0  0 . . . C i A E  CAB; 

0 0 0  0 0 0  0 . . .  0 -1 

0 0 0  0 0 0  0 . . . -  1 0 

0 

0 

cos WG; 

-cW sin wcW 
0 0 
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The procedure for evaluating % is the same as was used in reference 1 
but will be sketched here f o r  completeness. First the quantities S s  and sw 0 are defined as fo l lows:  

For even solutions: 

w l  0 
W s = cos WG 
0 I -W s = -cW sin aW 

0 0 0 

For odd solutions: 

(A=) 

O I  

w 1  
0 
s = - sin wcW 

G: 

E;= cos WGo W 

Then equations (A131 are used alternately with equations (A14) up to and in- 
cluding n = N: 

Sh = C AhSw+ C BhSw 

-h h-w h w  
'n ~ n n  

S z  = CRAnSn-l w-h + CRB:St-l 

-W w-h + CfB~sh S = C A S  

= C A S + CRBnSn 

R n n  Rnnl 
n R n n-1 R n n-1 

where 
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h sinh 2hGn IGn 2h - 
0 
+ h  C A  = R n  

1 h 
n I c sin 2hG 

lcos 2hGn h 

rGE sinh 2hGE 

h 
n 1-Gt sin 2hG 

Finally, 

These quantities are used in the computation of DN. When % is deemed 
I to be sufficiently close to zero, the value of E which was used in that com- 

putation is considered to be an eigenvalue for the given combination of 
and H,. 

vO 
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APPENDIX B 

COMPUTATION OF WEBER FUNCTIONS 

Parabolic cylinder functions (or Weber functions) oscillate with amplitudes 

proportional to i F ( v  +$). f i o m  equation (14) it can be seen that v can be 
very large in these computations and, in fact, became large enough so that the 
numbers in the computations would sometimes fall outside the range of the Lewis d 

7094. For this reason, a "reduced" Weber function with an amplitude not exceed- 
ing one unit was used in this computation (ref. 6). 
of these functions follows. 

A description of the use 

The superscript R denotes reduced. Then the determinantal compatibility 
condition DN = 0 can be written as 

It may be noted that for the values of 
be greater than zero so that % and 
Her e 

(BO 1 R  z) DN = 0 

E 
1 in this report, r ( v  + z), will always 

Df: vanish at the same values of E. 

i$ = -s$Lg + SNCL4\1 h ' R  

where 

Practical procedures for computing values of high-order Weber functions do 
not seem to be readily available especially at large arguments (ref. 7), so a 
procedure for obtaining such values on the Lewis 7094 was developed. 
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